Graph Algorithms for Data Science: With examples in Neo4j

Graph Algorithms for Data Science
by Tomaž Bratanic

English | 2024 | ISBN: 1617299464 | 353 pages | True PDF | 35.74 MB

 


Practical methods for analyzing your data with graphs, revealing hidden connections and new insights.

Graphs are the natural way to represent and understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with concrete advice on implementation and deployment. You don’t need any graph experience to start benefiting from this insightful guide. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.

In Graph Algorithms for Data Science you will learn:

Labeled-property graph modeling
Constructing a graph from structured data such as CSV or SQL
NLP techniques to construct a graph from unstructured data
Cypher query language syntax to manipulate data and extract insights
Social network analysis algorithms like PageRank and community detection
How to translate graph structure to a ML model input with node embedding models
Using graph features in node classification and link prediction workflows


Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications like machine learning, fraud detection, and business data analysis. It’s filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You’ll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more.

Foreword by Michael Hunger.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology

A graph, put simply, is a network of connected data. Graphs are an efficient way to identify and explore the significant relationships naturally occurring within a dataset. This book presents the most important algorithms for graph data science with examples from machine learning, business applications, natural language processing, and more.

About the book

Graph Algorithms for Data Science shows you how to construct and analyze graphs from structured and unstructured data. In it, you’ll learn to apply graph algorithms like PageRank, community detection/clustering, and knowledge graph models by putting each new algorithm to work in a hands-on data project. This cutting-edge book also demonstrates how you can create graphs that optimize input for AI models using node embedding.

What's inside

Creating knowledge graphs
Node classification and link prediction workflows
NLP techniques for graph construction


About the reader

For data scientists who know machine learning basics. Examples use the Cypher query language, which is explained in the book.

About the author

Tomaž Bratanic works at the intersection of graphs and machine learning.

Arturo Geigel was the technical editor for this book.

Table of Contents

PART 1 INTRODUCTION TO GRAPHS
1 Graphs and network science: An introduction
2 Representing network structure: Designing your first graph model
PART 2 SOCIAL NETWORK ANALYSIS
3 Your first steps with Cypher query language
4 Exploratory graph analysis
5 Introduction to social network analysis
6 Projecting monopartite networks
7 Inferring co-occurrence networks based on bipartite networks
8 Constructing a nearest neighbor similarity network
PART 3 GRAPH MACHINE LEARNING
9 Node embeddings and classification
10 Link prediction
11 Knowledge graph completion
12 Constructing a graph using natural language processing technique

 

Graph Algorithms for Data Science: With examples in Neo4j


 TO MAC USERS: If RAR password doesn't work, use this archive program: 

RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


 TO WIN USERS: If RAR password doesn't work, use this archive program: 

Latest Winrar  and extract password protected files without error.


 speedzodiac   |  

Information
Members of Guests cannot leave comments.


SermonBox - Seasonal Collection

SermonBox - The Series Pack Collection

Top Rated News

  • Christmas Material
  • Laser Cut & Print Design Elements Bundle - ETSY
  • Daz3D - All Materials - SKU 37000-37999
  • Cgaxis - All Product - 2019 - All Retail! - UPDATED!!!
  • DigitalXModels Full Collections
  • Rampant Design Tools Full Collections Total: $4400
  • FilmLooks.Com Full Collection
  • All PixelSquid Product
  • The Pixel Lab Collection
  • Envato Elements Full Sources- 3200+ Files
  • Ui8.NET Full Sources
  • The History of The 20th Century
  • The Dover Collections
  • Snake Interiors Collections
  • Inspirational Collections
  • Veer Fancy Collections
  • All Ojo Images
  • All ZZVE Collections
  • All Sozaijiten Collections
  • All Image Broker Collections
  • Shuterstock Bundle Collections
  • Tattoo Collections
  • Blend Images Collections
  • Authors Tuorism Collections
  • Motion Mile - Big Bundle
  • PhotoBacks - All Product - 2018
  • Dekes Techniques - Photoshop & Illustrator Course - 1 to 673
Telegram GFXTRA Group
Udemy - Turkce Gorsel Ogrenme Setleri - Part 2
Videohive Wow Pack Series


rss